13.11.2017
БИОДЕГРАДАЦИЯ КСЕНОБИОТИКОВ КАК САМОЗАЩИТА ПРИРОДЫ

 

Окончание.

 

Сочетание свойств

 

Одним из наиопаснейших загрязнителей окружающей среды является тетраэтилсвинец, который длительное время использовался как антидетонационная присадка к моторным топливам (рис. 13). Китай производит его до сих пор для стран Третьего мира. Кроме того, тетраэтилсвинец во всем мире продолжает добавляться в авиационный бензин и специальные марки бензина для спортивных автомобилей.

 

Для него вообще не существует предельно допустимой концентрации — присутствие тетраэтилсвинца в воде даже на пороге обнаружения самым чувствительным прибором делает ее непригодной для использования!

 

Тетраэтилсвинец Pb(C2H5)4 относится к так называемым элементоорганическим веществам. То есть это типичное органическое вещество — летучая жидкость, несмешивающаяся с водой, но отлично растворимая в жирах. И в то же время оно содержит свинец — элемент, совсем не характерный для органической химии.

 

Собственно, свинец и придает веществу токсичность. А боковые этильные группы придают ему липофильность и способность беспрепятственно проникать через клеточные мембраны. От этого токсичность тетраэтилсвинца становится экстремально высокой.

 

Казалось бы, такое вещество никто не способен скушать. И тем не менее, тетраэтилсвинец гидролизуют почвенные микроорганизмы до этилового спирта и ионов двухвалентного свинца [29]. Разумеется, свинец никуда не девается и остается опасным для окружающей среды. Но неорганические соли свинца менее токсичны, поскольку не проникают через липидные мембраны клеток.

 

Ферментативная металлургия

 

Для переходных (еще часто называемых «тяжелыми», хотя это не вполне корректно) металлов характерны несколько степеней окисления. Соответственно, биодеградация в их случае может сводиться к окислению или, наоборот, восстановлению. Хроматы CrO42- и дихроматы Cr2O72- (производные типичного переходного металла — хрома) — очень сильные окислители и канцерогены [30] — восстанавливаются Bacillus sphaericus до ионов трехвалентного хрома Cr3+, значительно менее токсичного и на три порядка менее сильного мутагена.

 

Соли двухвалентной ртути даже более токсичны, чем соли свинца. И тот, и другой элементы имеют сродство к доменам [31] «цинковых пальцев» в белках, намного большее, чем сам цинк, и легко вытесняют из активных центров этот полезный металл. При этом структура домена нарушается, и белок моментально утрачивает активность, причем необратимо.

 

Металлическая ртуть

 

Рисунок 14. «Жидкое серебро» — металлическая ртуть — может быть получена, в том числе, при помощи фермента. сайт interesno.cc

 

Поскольку в следовых концентрациях ртуть присутствует в земной коре, ряд бактерий «научился» ее обезвреживать весьма своеобразным образом. Эти микроорганизмы содержат плазмидные гены mer, кодирующие фермент НАДФ(Н)-зависимую редуктазу, восстанавливающую ионы Hg2+ до металлической ртути (рис. 14), значительно менее ядовитой [32]. Мы знаем множество ферментов с самыми разнообразными активностями, зачастую весьма необычными. Но фермент, осуществляющий металлургический процесс, бесспорно, даже на их фоне является уникальным!

 

Рациональный подход

 

Разумеется, было бы нерационально формировать метаболические пути биодеградации «с нуля». Гораздо проще приспосабливать под новые нужды те пути, которые уже существуют в природе. Следует иметь в виду, что все органические вещества, состоящие из углерода, имеют общие свойства.

 

Полиэтилен (рис. 15) является самым массовым и широко известным искусственным полимером. Он дешев в производстве, получается из доступного сырья, сравнительно стоек, обладает хорошими прочностными характеристиками, неядовит. Поэтому из полиэтилена делают все — от водопроводных труб до пищевой пленки.

 

Для нас же главным является то, что по своей химической природе полиэтилен является высшим алканом, состоящим из повторяющихся метиленовых звеньев —(СН2)n —. То есть, строение его очень похоже на строение пчелиного воска и жиров, которые микробы давно научились усваивать. Правда, есть отличие — цепочки полиэтилена значительно длиннее. Соответственно, его молекулы менее подвижны и в реакции вступают хуже. Следовательно, усвоить полиэтилен микробу все-таки труднее, чем воск или триглицерид. Поэтому полиэтиленовые пакеты даже в почве сохраняются годами [7], [9], [10].

 

Тем не менее, полиэтилен медленно разлагается почвенными бактериями Pseudomonas aeruginosa аналогично всем парафинам: сначала окисляется по схеме алкан → спирт → альдегид → жирная кислота → ацил-КоА, затем подвергается классическому β-окислению до уксусной кислоты [33]. Поскольку макромолекула полиэтилена подвергается ферментативной деструкции только с конца, разветвленный полиэтилен разлагается микроорганизмами быстрее, чем линейный [7]. Биодеградацию полиэтилена можно еще ускорить, если заранее внести в него так называемые «прооксиданты» — вещества, которые при попадании того же пакета в окружающую среду приобретают свойства окислителей и дополнительно рвут макромолекулы на куски.

 

Фенолформальдегидная смола (рис. 16) является, пожалуй, самой «классической» пластмассой, из которой делают выключатели и шары для бильярда. Так же как полиэтилен, фенолформальдегидные смолы до недавнего времени считались неприступными для ферментативного расщепления: сшитый в трехмерную сеть ни в чем не растворимый полимер слишком устойчив!

 

Фенолформальдегидная пластмасса

 

Рисунок 16. Фрагмент структуры фенолформальдегидной пластмассы. «Википедия»

 

Однако гриб Phanerochaete chrysosporium начинает растворять частицы пластика спустя всего трое суток после посева. При этом отмечается накопление в среде фенола — одного из продуктов биодеградации [34]. Как уже говорилось в начале, в природе грибы-трутовики разлагают лигнин древесины при помощи ферментов лакказ; те же самые лакказы принимают участие в деградации фенолформальдегидных пластмасс, по свойствам сходных с лигнином.

 

Из огня да в полымя

 

Зачастую биодеградация какого-либо не встречающегося в природе вещества сопровождается образованием других веществ, тоже неприродных. Например, взрывчатое вещество гексоген в анаэробных условиях (в активном иле) восстанавливается до смеси нитрозопроизводных. Один из них — диметилнитрозамин — особенно интересен тем, что в результате дальнейшего метаболического восстановления димеризуется, превращаясь в два изомерных диметилгидразина: симметричный и несимметричный (рис. 17).

 

Анаэробная биодеградация гексогена

 

Рисунок 17. Анаэробная биодеградация гексогена (обведен красным) сопровождается образованием другого крайне вредного для окружающей среды вещества — гептила (CH3)2NNH2.

 

Несимметричный диметилгидразин чрезвычайно токсичен и реакционноспособен, а известен как гептил — компонент ракетного топлива (рис. 18) [35].

 

Ступень космической ракеты

 

Рисунок 18. Эта рухнувшая в алтайский лес отработанная ступень космической ракеты наверняка содержит гептил — несимметричный диметилгидразин. Сайт baikonur.russian.space

 

Но это не фатально. Сам гептил, по методу отечественных разработчиков [36], утилизируется культурами бактерий Acinetobacter sp. H-1, Rhodococcus sp. H-2 и Arthrobacter sp. H-3 и вот теперь уже полностью обезвреживается.

 

О пользе безмозглости

 

Все производные фосфоновых кислот и некоторые замещенные фосфаты очень токсичны. Причем токсичность их имеет различные «оттенки» в зависимости от природы заместителей, поэтому среди фосфорорганических веществ есть пестициды, боевые отравляющие вещества и сильнодействующие лекарственные препараты.

 

Но, несмотря на внешнее разнообразие, все вещества этой группы имеют строго одно и то же биологическое свойство — они избирательно и необратимо ингибируют ферменты сериновые гидролазы. Например, ацетилхолинэстеразу, гидролизующую нейромедиатор ацетилхолин, передающий сигналы из нервной системы в мышцы. То есть все фосфорорганические соединения вызывают мышечные спазмы и паралич, в конце концов приводящий к остановке дыхания.

 

Ярким примером этой группы веществ является боевое отравляющее вещество американского производства VX (рис. 19), ставшее известным широкой публике благодаря кинобоевику «Скала». Для известности есть повод, правда, печальный. VX является одним из самых ядовитых веществ, созданных человеком. Следует вспомнить о том, что LD50 VX перорально для человека составляет всего 70 мкг/кг! То есть в 53 раза ниже, чем у синильной кислоты, о которой говорилось выше! Next 1/2

 

Структурная формула VX

 

Рисунок 19а. Структурная формула одного из самых ядовитых веществ на свете — фосфорорганического боевого отравляющего вещества VX. «Википедия»

 

Впрочем, у нас с вами в результате эволюции развилась самая сложная в природе нервная система. А у представителей царства грибов ее нет вообще, и в данном случае это дает им неоспоримое преимущество. Замечательный по полноте собранного материала обзор [37] дает представление о микробной и грибной деградации фосфорорганических пестицидов и боевых отравляющих веществ, ее путях, ферментах и генетической основе. В указанном обзоре приведена схема биодеградации VX до фосфата и сульфата, аммиака, воды и углекислого газа при помощи широко известного съедобного гриба вёшенки Pleurotus ostreatus. В биодеградации фосфорорганических веществ участвуют экзотические ферменты, например С-Р-лиазы, способные разрывать связь углерод—фосфор, в природе встречающуюся очень редко.

 

Химия или биотехнология?

 

Известны и такие случаи биодеградации, в которых каждое промежуточное соединение является промышленно важным. Фактически это уже не биодеградация, а биотехнологическая трансформация вещества. Следует помнить о том, что живая клетка — это самая совершенная химическая фабрика. Вот почему биотехнологические процессы в наше время все настойчивее вторгаются в химическое производство. Например, известен следующий путь биодеградации антрацена грибком Aspergillus fumigatus, включающий в себя антрон, антрахинон, фталевый ангидрид и фталевую кислоту — все ценные крупнотоннажные продукты химической промышленности (рис. 20) [38]. Впрочем, это уже отдельная большая и интересная тема.

 

Биодеградация антрацена


Рисунок 20. Биодеградация антрацена грибком Aspergillus fumigatus включает целый ряд практически важных веществ. [38]

 

Поймать двух зайцев

 

Если ксенобиотики способны обезвреживаться биосферой и включаться в ее состав в виде биогенных элементов, то можно пофантазировать и развить идею дальше. А что, если неприродные вещества превращать непосредственно в пищу?! То есть вместо одной проблемы решить сразу две — защитить окружающую среду и спасти население планеты от голода. Ведь ряд ксенобиотиков содержит в себе немало ценных атомов, например связанный азот, в котором нуждается все живое и мы с вами. Впрочем, зачем фантазировать? Такой пример уже есть. Предложено культивирование съедобных грибов на богатых азотом пластиках полиуретанах (рис. 21) с целью дальнейшего их употребления в пищу [39]! И даже создание на этой основе мини-ферм.

 

Полиуретаны

 

Рисунок 21. Полиуретаны содержат значительное количество азота — ценного биогенного элемента. «Википедия» 

 

Ксенобиотик или пища? 

 

Но микроорганизмы не только обезвреживают неприродные вещества. В ряду поколений они вырабатывают к ним все большую устойчивость, превращаясь в специализированные штаммы-деструкторы конкретных соединений. Римма Павловна Наумова (впоследствии профессор Казанского университета) в своей диссертационной работе [40] продемонстрировала пример адаптации накопительной культуры бактерий к ε-капролактаму (рис. 22) — мономеру капрона, широко известного синтетического волокна. 

 

Капролактам и капрон

 

Рисунок 22. Капролактам и капрон. Слева: структурная формула капролактама — мономера капроновых волокон. А справа капрон, который делают из капролактама. Его, кстати, тоже едят микробы. «Википедия» и сайт images.md.prom.st 

 

Первый посев показал признаки роста только через 4 недели при концентрации капролактама всего полграмма в литре культуральной среды. Четвертый пересев продемонстрировал биодеградацию капролактама в концентрации уже 2 грамма в литре в течение 1–2 дней! Но это еще не все! Автору удалось получить штамм, разлагающий капролактам в концентрации 5 г/л и даже полимерный капрон (полиамид 6-аминокапроновой кислоты). К капролактаму в концентрации 15 граммов на литр (а это тридцатикратное увеличение концентрации по сравнению с исходной) вырабатывалась частичная адаптация. Фактически, капролактам для этих микробов уже не ксенобиотик, а пища. 

 

Генетические основы биодеградации ε-капролактама до сих пор не известны. В последние годы в подмосковном Пущино занялись изучением плазмид биодеградации ε-капролактама и уже добились некоторых успехов: исследован оперон окисления и транспорта адипината — промежуточного продукта деградации капролактама [48]. — Ред. 

 

Эпохальное событие

 

Но, специализируясь на одном источнике питания, микробы утрачивают способность усваивать другие. А реальные техногенные катастрофы (например, разливы нефти) сопровождаются попаданием в окружающую среду целой смеси токсичных веществ.

 

В начале 1970-х гг. американский генетик бенгальского происхождения Ананда Мохан Чакрабарти, в то время работавший в кампании «Дженерал электрик», попытался решить эту проблему «в лоб». Для этого он взял бактерию Pseudomonas putida, одного из самых популярных промышленных биодеструкторов, и внес в нее ни много ни мало четыре плазмиды, кодирующие способность усваивать компоненты нефти.

 

Соединения, разлагаемые «супербациллой»

 

Рисунок 23. Разнообразие структур соединений, разлагаемых «супербациллой» — настоящим универсалом биодеградации. а — Октан. б — Нафталин. в — Камфора. г — Салициловая кислота. «Википедия» 

 

Искусственно выведенный путем переноса плазмид штамм, прозванный «супербациллой», разлагает целый ряд продуктов химической промышленности, имеющих значительные структурные различия — камфору, октан, салициловую кислоту и нафталин (рис. 23) [41]. Благодаря этой способности, «супербацилла» на неочищенной нефти растет лучше природных культур. 

 

Надо сказать, что на практике «супербацилла» никогда не использовалась для ликвидации нефтяных загрязнений. То есть она стала своего рода биотехнологической Царь-пушкой, никогда не стрелявшей. Причина в том, что культура, содержащая столько плазмид, неустойчива и склонна терять «лишние» гены, то есть вырождаться. 

 

И тем не менее, она открыла новую эпоху в биотехнологии, став первым в истории запатентованным генномодифицированным организмом. Впоследствии были созданы другие штаммы, менее известные общественности и без приставки «супер-», но принесшие реальную пользу. Для нас же важно, что эпоха патентования генномодифицированных организмов началась именно с биодеградации. Это — показатель ее практической востребованности. А является генная инженерия благом или злом — уже отдельная тема. 

 

Согласно работе, посвященной патентованию в области биоремедиации, за период с 1990 по 2013 годы в мире вышло 443 патента по этому направлению (имеются в виду только международные патенты) [42]. Из них более 60%, как нетрудно докадаться, приходится на США, 23% — на Азию, и только 10% — на старушку Европу. Российские патенты собраны в базе ФИПС. И здесь биодеградация представлена довольно весомо.

 

Большинство патентов посвящены биодеградации нефти и нефтепродуктов, меньше — биодеградации пестицидов. Ряд патентов отражает биодеградацию других продуктов химической промышленности, присутствующих в сточных водах, и боевых отравляющих веществ. В замечательном учебнике «Прикладная экобиотехнология» довольно подробно описаны коммерческие биопрепараты на основе штаммов биодеструкторов [43]. В России их разработкой занимаются в Москве, Пущино, Петербурге, Уфе, Казани, Перми, Сыктывкаре, Екатеринбурге и Новосибирске.

 

Кстати говоря, именно исследование окисления камфоры культурой Pseudomonas putida позволило изучить механизм каталитического действия цитохрома Р450. То есть биодеградация принесла не только практическую пользу, но и внесла свой вклад в фундаментальное научное знание. 

 

А был ли ксенобиотик?

 

Способность биосферы к утилизации и обезвреживанию ксенобиотиков основана на том, что большинство из них ксенобиотиками не является. То есть в следовых количествах образуются в биосфере и постоянно в ней присутствует. 

 

Например, четыреххлористый углерод (тетрахлорметан) разлагается культурой Pseudomonas sp. KC с образованием чрезвычайно токсичных промежуточных метаболитов — фосгена (дихлорангидрид угольной кислоты) и тиофосгена (рис. 24). Конечно, существуют эти опасные молекулы очень недолго — доли секунды — и моментально гидролизуются [44] (рис. 25). 

 

Фосген и тиофосген

 

Рисунок 24. Структурные формулы фосгена (слева) и тиофосгена (справа). «Википедия».

 

Аэробная биодеградация четыреххлористого углерода

 

Рисунок 25. Аэробная биодеградация четыреххлористого углерода с образованием в качестве промежуточных метаболитов тиофосгена (вверху) и фосгена (внизу). На схеме эти страшные для всего живого вещества обведены красным цветом. [44] 

 

Фосген обладает запахом подгнивших фруктов и перепрелой листвы, но этот безобидный аромат не должен вводить в заблуждение. Он, так же как упоминавшийся выше иприт, склонен присоединяться к биополимерам, образуя с ними аддукты. 

 

Будучи газообразным веществом при комнатной температуре, фосген поражает в первую очередь легкие, вызывая их отек и смерть от удушья. В Первую мировую войну фосген применяли как боевое отравляющее вещество, да и сегодня он не утратил значение в производстве поликарбонатов и мочевины. 

 

Тиофосген (дихлорангидрид теперь уже тиоугольной кислоты) по свойствам схож с фосгеном, но тяжелее и при комнатной температуре представляет собой жидкость красного цвета. Он тоже очень ядовит, применяется в производстве тиомочевины и тиокарбаматов. Представить такие вещества, символизирующие саму смерть, в качестве природных крайне сложно! 

 

Конечно, в этом месте последует справедливое возражение. Мол, фосген образуется в живых клетках, но четыреххлористый углерод, метаболитом которого он является, в природе не присутствует. Применяется четыреххлористый углерод в качестве промышленного растворителя, отличается негорючестью — им даже тушат возгорания. Но при этом весьма ядовитый, поражает печень и используется фармакологами в тестах на гепатопротективные свойства лекарств. 

 

Четырёххлористый углерод, что удивительно, тоже является природным веществом — он среди прочих галогеналканов выделяется морскими красными водорослями Asparagopsis armata (рис. 26) [45]. То есть в биосфере существуют метаболические пути, ведущие и к четыреххлористому углероду, и к фосгену! А сам фосген с изрядной долей условности все-таки можно считать природным соединением. 

 

Asparagopsis armata

 

Рисунок 26. Красная водоросль Asparagopsis armata — природный продуцент четыреххлористого углерода. Сайт www.marlin.ac.uk 

 

Пара слов о своем

 

Микроорганизмы выживают при контакте даже с таким губительным для всех форм жизни веществом, как белый фосфор, способны адаптироваться к его присутствию в окружающей среде и перерабатывать его в менее опасные соединения. Впрочем, об этом довольно подробно (и, надеюсь, увлекательно) рассказано в статьях [46], [47]. 

 

Заключение

 

Перечисляя примеры биодеградации, многие из которых уже прочно вошли в практику, невольно испытываешь восхищение гибкостью метаболических путей. Биосфера способна перерабатывать практически любое химическое вещество. Микробные популяции создают новые, не существовавшие ранее ферменты (а заодно и кодирующие их плазмидные гены), в эксклюзивном порядке к любому продукту химической промышленности. Понимание этого вселяет надежду на то, что современный экологический кризис когда-нибудь будет преодолен. Ну а мы, люди науки, должны всеми мерами этому способствовать. 

 

Литература

 

 

 

Опубликовано на научно-популярном сайте «Биомолекула» 29 августа 2017 года.

 

Источник: https://biomolecula.ru/articles/biodegradatsiia-ksenobiotikov-kak-samozashchita-prirody

 

НАШ TELEGRAM

Статьи / 8 / Искандер-ака / Рейтинг: 5 / 1
Всего комментариев: 0
«Эко.знай» — международный сетевой ресурс экологического просвещения © 2015-2017.    Редактор — Александр Жабский.    +7-904-632-21-32,    zhabskiy@mail.ru